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Agent and Environment
An agent is something that 
perceives and acts in an 
environment.

The agent function for an agent 
specifies the action taken by the 
agent in response to any percept
sequence.

The performance measure
evaluates the behavior of the agent 
in an environment.

A rational agent acts so as to 
maximize the expected value of the 
performance measure, given the 
percept sequence it has seen so far.
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Agent and Environment
A task environment specification includes the performance 
measure, the external environment, the actuators, and the 
sensors.

The agent program implements the agent function.
◦ There exists a variety of basic agent-program designs reflecting 

the kind of information made explicit and used in the decision 
process.

Goal-based agents act to achieve their goals.
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Environment Representations
atomic, factored, and structured

(a) Atomic representation: a state (such as B or C) is a black box 
with no internal structure;

(b) Factored representation: a state consists of a vector of 
attribute values; values can be Boolean, real-valued, or one of a 
fixed set of symbols.

(c) Structured representation: a state includes objects, each of 
which may have attributes of its own as well as relationships to 
other objects.
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PROBLEM-SOLVING AGENTS
A problem-solving agent is one kind of goal-based agent.
◦ Problem-solving agents use atomic representations—that is, 

states of the world are considered as wholes, with no internal 
structure visible to the problem solving algorithms.

Intelligent agents are supposed to maximize their 
performance measure.

Achieving this is sometimes simplified if the agent can 
adopt a goal and aim at satisfying it.
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PROBLEM-SOLVING AGENTS
Goal formulation is the first step in problem solving. ( based on 
the current situation and the agent’s performance measure)

Consider a goal to be a set of world states—exactly those states 
in which the goal is satisfied.
◦ The agent’s task is to find out how to act, now and in the future, so that it 

reaches a goal state.

Problem formulation is the process of deciding what actions and 
states to consider, given a goal.

The solution to any problem is a fixed sequence of actions.

The process of looking for a sequence of actions that reaches the 
goal is called search.
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A problem can be defined 
formally by five components:

The initial state that the agent starts in.

A description of the possible actions available to the agent.
◦ Given a particular state s, ACTIONS(s) returns the set of actions that can be executed in s. We say 

that each of these actions is applicable in s.

A description of what each action does; the formal name for this is 
the transition model, 

◦ specified by a function RESULT(s, a) that returns the state that results from doing action a in state s. 
We also use the term successor to refer to any state reachable from a given state by a single action.

The goal test, which determines whether a given state is a goal state.
◦ Sometimes there is an explicit set of possible goal states, and the test simply checks whether the 

given state is one of them.

A path cost function that assigns a numeric cost to each path.
◦ The problem-solving agent chooses a cost function that reflects its own performance measure.

10



EXAMPLE 
PROBLEMS
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The vacuum-cleaner 
The vacuum-cleaner world shown in figure.

This world is so simple that we can describe 
everything that happens; it’s also a made-up 
world, so we can invent many variations.

This particular world has just two locations: 
squares A and B.

The vacuum agent perceives which square it is 
in and whether there is dirt in the square.

It can choose to move left, move right, suck up 
the dirt, or do nothing.

One very simple agent function is the 
following: if the current square is dirty, then 
suck; otherwise, move to the other square.
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The vacuum-cleaner 
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States: The state is determined by both the agent location and the dirt 
locations. The agent is in one of two locations, each of which might or 
might not contain dirt. Thus, there are 2 × 22 = 8 possible world states.



The state space for the 
vacuum world
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Initial state: Any state can be designated as the initial state.

Actions: In this simple environment, each state has just three 
actions: Left, Right, and Suck. Larger environments might also 
include Up and Down.

Transition model: The actions have their expected effects, except 
that moving Left in the leftmost square, moving Right in the 
rightmost square, and Sucking in a clean square have no effect.

Goal test: This checks whether all the squares are clean.

Path cost: Each step costs 1, so the path cost is the number of 
steps in the path.



The 8-puzzle

15

States: A state description specifies the location of each of the eight tiles 

and the blank in one of the nine squares.

The 8-puzzle has 9!/2=181, 440 reachable states and is easily solved.



The 8-puzzle
Initial state: Any state can be designated as the initial state. 

Actions: The simplest formulation defines the actions as 
movements of the blank space Left, Right, Up, or Down. Different 
subsets of these are possible depending on where the blank is.

Transition model: Given a state and action, this returns the 
resulting state; for example, if we apply Left to the start state in 
Figure 3.4, the resulting state has the 5 and the blank switched.

Goal test: This checks whether the state matches the goal 
configuration.

Path cost: Each step costs 1, so the path cost is the number of 
steps in the path.

16



The 8-puzzle
This family is known to be NP-complete, so one does not expect 
to find methods significantly better in the worst case than the 
search algorithms described in this chapter and the next.

The 8-puzzle has 9!/2=181, 440 reachable states and is easily 
solved.

The 15-puzzle (on a 4×4 board) has around 1.3 trillion states, 
and random instances can be solved optimally in a few 
milliseconds by the best search algorithms.

The 24-puzzle (on a 5 × 5 board) has around 1025 states, and 
random instances take several hours to solve optimally.
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8-queens problem
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The goal of the 8-queens problem is to place eight queens on a chessboard 
such that no queen attacks any other.

States: Any arrangement of 0 to 8 queens on the board is a state.



8-queens problem
Initial state: No queens on the board.

Actions: Add a queen to any empty square.

Transition model: Returns the board with a queen added to the 
specified square.

Goal test: 8 queens are on the board, none attacked.

In this formulation, we have 64! / (64-8)! = 64 ・ 63 ・・・ 57 ≈ 
1.8×1014 possible sequences to investigate.
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Real-world problems
route-finding problem

20

States: Each state obviously includes a location (e.g., an 
airport) and the current time. 
Furthermore, because the cost of an action (a flight segment) may depend on 
previous segments, their fare bases, and their status as domestic or 
international, the state must record extra information about these “historical” 
aspects.



Real-world problems
route-finding problem
Initial state: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class, 
leaving after the current time, leaving enough time for within-airport 
transfer if needed.

Transition model: The state resulting from taking a flight will have the 
flight’s destination as the current location and the flight’s arrival time as 
the current time.

Goal test: Are we at the final destination specified by the user?

Path cost: This depends on monetary cost, waiting time, flight time, 
customs and immigration procedures, seat quality, time of day, type of 
airplane, frequent-flyer mileage awards, and so on.
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SEARCHING FOR SOLUTIONS
The possible action sequences starting at the initial state 
form a search tree with the initial state at the root; the 
branches are actions and the nodes correspond to states in 
the state space of the problem.
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Search Problem
Search space : The set of objects (sequence of 
states) among which we search for the solution.

Goal condition : What are the characteristics of the 
object (goal) we want to find in the search space.
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Graph Search Problem
States : game positions, or locations in the map that are represented by 
nodes in the graph.

Initial state : start position.

Goal state : target position/s (node/s).

Actions and transition : connections between graph nodes.

Path cost: Each step costs 1, so the path cost is the number of steps in 
the path.
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Search Strategies
UNINFORMED SEARCH STRATEGIES (BLIND SEARCH )
◦ The term means that the strategies have no additional 

information about states beyond that provided in the problem 
definition. All they can do is generate successors and distinguish 
a goal state from a non-goal state. All search strategies are 
distinguished by the order in which nodes are expanded.

INFORMED (HEURISTIC) SEARCH STRATEGIES
◦ one that uses problem specific knowledge beyond the definition 

of the problem itself (node is selected for expansion based on 
an evaluation function).
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Breadth-first search
1  procedure BFS(G, s) 
2      let Q be a queue
3      label s as discovered
4      Q.enqueue(s)
5      while Q is not empty do
6          v := Q.dequeue()
7          if v is the goal then
8              return v
9          for all edges from v to w in G.adjacentEdges(v) do
10             if w is not labeled as discovered then
11                 label w as discovered
12                 w.parent := v
13                 Q.enqueue(w)
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Algorithm Performance
Completeness: Is the algorithm guaranteed to find 
a solution when there is one

Optimality: Does the strategy find the optimal 
solution

Time complexity: How long does it take to find a 
solution

Space complexity: How much memory is needed to 
perform the search

77



Algorithm Performance
b: the branching factor or maximum number of 
successors of any node.

d: the depth of the shallowest goal node (i e the 
number of steps along the path from the root).

m: the maximum length of any path in the state 
space.

L: depth limit.
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Breadth-First Search 
Performance
Time: O( bd ) [scary]

Space: O( bd )[Problem store each node]

Complete: Yes (if the shallowest goal node is at some finite 
depth d, breadth-first search will eventually find it after 
generating all shallower nodes)

Optimal: Yes (the shallowest goal node is not necessarily 
the optimal one but, if step costs are all identical??)
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Depth-first search
DFS-iterative (G, s):                                   //Where G is graph and s is 
source vertex

let S be stack
S.push( s )            //Inserting s in stack 
mark s as visited.
while ( S is not empty):

//Pop a vertex from stack to visit next
v  =  S.pop( )

//Push all the neighbours of v in stack that are not visited
for all neighbours w of v in Graph G:

if w is not visited :
S.push( w )         
mark w as visited
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Algorithm Performance
Completeness: Is the algorithm guaranteed to find 
a solution when there is one

Optimality: Does the strategy find the optimal 
solution

Time complexity: How long does it take to find a 
solution

Space complexity: How much memory is needed to 
perform the search

108



Algorithm Performance
b: the branching factor or maximum number of 
successors of any node.

d: the depth of the shallowest goal node (i e the 
number of steps along the path from the root).

m: the maximum length of any path in the state 
space.

L: depth limit.
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Depth-First Search
Performance
Time: O( bm)
◦ (Note that m itself can be much larger than d (the depth of the 

shallowest solution) and is infinite if the tree is unbounded.)

Space: O( bm)
◦ (depth-first tree search needs to store only a single path from 

the root to a leaf node, along with the remaining unexpanded 
sibling nodes for each node on the path. Once a node has been 
expanded, it can be removed from memory as soon as all its 
descendants have been fully explored.)

Complete: No
◦ (Because of Cycle and In infinite state spaces, fail if an infinite 

non-goal path is encountered.)

Optimal: No
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