
Artificial
Intelligence

Lecture 02

Dr. Ahmed Hassan

Computer Sc ience Department

1

Books

2

PowerPoint
http://www.bu.edu.eg/staff/ahmedaboalatah14-courses/14767

3

Problem-solving
SOLVING PROBLEMS BY
SEARCHING I

4

Agent and Environment
An agent is something that
perceives and acts in an
environment.

The agent function for an agent
specifies the action taken by the
agent in response to any percept
sequence.

The performance measure
evaluates the behavior of the agent
in an environment.

A rational agent acts so as to
maximize the expected value of the
performance measure, given the
percept sequence it has seen so far.

5

Agent and Environment
A task environment specification includes the performance
measure, the external environment, the actuators, and the
sensors.

The agent program implements the agent function.
◦ There exists a variety of basic agent-program designs reflecting

the kind of information made explicit and used in the decision
process.

Goal-based agents act to achieve their goals.

6

Environment Representations
atomic, factored, and structured

(a) Atomic representation: a state (such as B or C) is a black box
with no internal structure;

(b) Factored representation: a state consists of a vector of
attribute values; values can be Boolean, real-valued, or one of a
fixed set of symbols.

(c) Structured representation: a state includes objects, each of
which may have attributes of its own as well as relationships to
other objects.

7

PROBLEM-SOLVING AGENTS
A problem-solving agent is one kind of goal-based agent.
◦ Problem-solving agents use atomic representations—that is,

states of the world are considered as wholes, with no internal
structure visible to the problem solving algorithms.

Intelligent agents are supposed to maximize their
performance measure.

Achieving this is sometimes simplified if the agent can
adopt a goal and aim at satisfying it.

8

PROBLEM-SOLVING AGENTS
Goal formulation is the first step in problem solving. (based on
the current situation and the agent’s performance measure)

Consider a goal to be a set of world states—exactly those states
in which the goal is satisfied.
◦ The agent’s task is to find out how to act, now and in the future, so that it

reaches a goal state.

Problem formulation is the process of deciding what actions and
states to consider, given a goal.

The solution to any problem is a fixed sequence of actions.

The process of looking for a sequence of actions that reaches the
goal is called search.

9

A problem can be defined
formally by five components:

The initial state that the agent starts in.

A description of the possible actions available to the agent.
◦ Given a particular state s, ACTIONS(s) returns the set of actions that can be executed in s. We say

that each of these actions is applicable in s.

A description of what each action does; the formal name for this is
the transition model,

◦ specified by a function RESULT(s, a) that returns the state that results from doing action a in state s.
We also use the term successor to refer to any state reachable from a given state by a single action.

The goal test, which determines whether a given state is a goal state.
◦ Sometimes there is an explicit set of possible goal states, and the test simply checks whether the

given state is one of them.

A path cost function that assigns a numeric cost to each path.
◦ The problem-solving agent chooses a cost function that reflects its own performance measure.

10

EXAMPLE
PROBLEMS

11

The vacuum-cleaner
The vacuum-cleaner world shown in figure.

This world is so simple that we can describe
everything that happens; it’s also a made-up
world, so we can invent many variations.

This particular world has just two locations:
squares A and B.

The vacuum agent perceives which square it is
in and whether there is dirt in the square.

It can choose to move left, move right, suck up
the dirt, or do nothing.

One very simple agent function is the
following: if the current square is dirty, then
suck; otherwise, move to the other square.

12

The vacuum-cleaner

13

States: The state is determined by both the agent location and the dirt
locations. The agent is in one of two locations, each of which might or
might not contain dirt. Thus, there are 2 × 22 = 8 possible world states.

The state space for the
vacuum world

14

Initial state: Any state can be designated as the initial state.

Actions: In this simple environment, each state has just three
actions: Left, Right, and Suck. Larger environments might also
include Up and Down.

Transition model: The actions have their expected effects, except
that moving Left in the leftmost square, moving Right in the
rightmost square, and Sucking in a clean square have no effect.

Goal test: This checks whether all the squares are clean.

Path cost: Each step costs 1, so the path cost is the number of
steps in the path.

The 8-puzzle

15

States: A state description specifies the location of each of the eight tiles

and the blank in one of the nine squares.

The 8-puzzle has 9!/2=181, 440 reachable states and is easily solved.

The 8-puzzle
Initial state: Any state can be designated as the initial state.

Actions: The simplest formulation defines the actions as
movements of the blank space Left, Right, Up, or Down. Different
subsets of these are possible depending on where the blank is.

Transition model: Given a state and action, this returns the
resulting state; for example, if we apply Left to the start state in
Figure 3.4, the resulting state has the 5 and the blank switched.

Goal test: This checks whether the state matches the goal
configuration.

Path cost: Each step costs 1, so the path cost is the number of
steps in the path.

16

The 8-puzzle
This family is known to be NP-complete, so one does not expect
to find methods significantly better in the worst case than the
search algorithms described in this chapter and the next.

The 8-puzzle has 9!/2=181, 440 reachable states and is easily
solved.

The 15-puzzle (on a 4×4 board) has around 1.3 trillion states,
and random instances can be solved optimally in a few
milliseconds by the best search algorithms.

The 24-puzzle (on a 5 × 5 board) has around 1025 states, and
random instances take several hours to solve optimally.

17

8-queens problem

18

The goal of the 8-queens problem is to place eight queens on a chessboard
such that no queen attacks any other.

States: Any arrangement of 0 to 8 queens on the board is a state.

8-queens problem
Initial state: No queens on the board.

Actions: Add a queen to any empty square.

Transition model: Returns the board with a queen added to the
specified square.

Goal test: 8 queens are on the board, none attacked.

In this formulation, we have 64! / (64-8)! = 64 ・ 63 ・・・ 57 ≈
1.8×1014 possible sequences to investigate.

19

Real-world problems
route-finding problem

20

States: Each state obviously includes a location (e.g., an
airport) and the current time.
Furthermore, because the cost of an action (a flight segment) may depend on
previous segments, their fare bases, and their status as domestic or
international, the state must record extra information about these “historical”
aspects.

Real-world problems
route-finding problem
Initial state: This is specified by the user’s query.

Actions: Take any flight from the current location, in any seat class,
leaving after the current time, leaving enough time for within-airport
transfer if needed.

Transition model: The state resulting from taking a flight will have the
flight’s destination as the current location and the flight’s arrival time as
the current time.

Goal test: Are we at the final destination specified by the user?

Path cost: This depends on monetary cost, waiting time, flight time,
customs and immigration procedures, seat quality, time of day, type of
airplane, frequent-flyer mileage awards, and so on.

21

SEARCHING FOR SOLUTIONS
The possible action sequences starting at the initial state
form a search tree with the initial state at the root; the
branches are actions and the nodes correspond to states in
the state space of the problem.

22

Search Problem
Search space : The set of objects (sequence of
states) among which we search for the solution.

Goal condition : What are the characteristics of the
object (goal) we want to find in the search space.

23

Graph Search Problem
States : game positions, or locations in the map that are represented by
nodes in the graph.

Initial state : start position.

Goal state : target position/s (node/s).

Actions and transition : connections between graph nodes.

Path cost: Each step costs 1, so the path cost is the number of steps in
the path.

24

Search Strategies
UNINFORMED SEARCH STRATEGIES (BLIND SEARCH)
◦ The term means that the strategies have no additional

information about states beyond that provided in the problem
definition. All they can do is generate successors and distinguish
a goal state from a non-goal state. All search strategies are
distinguished by the order in which nodes are expanded.

INFORMED (HEURISTIC) SEARCH STRATEGIES
◦ one that uses problem specific knowledge beyond the definition

of the problem itself (node is selected for expansion based on
an evaluation function).

25

Breadth-first search
1 procedure BFS(G, s)
2 let Q be a queue
3 label s as discovered
4 Q.enqueue(s)
5 while Q is not empty do
6 v := Q.dequeue()
7 if v is the goal then
8 return v
9 for all edges from v to w in G.adjacentEdges(v) do
10 if w is not labeled as discovered then
11 label w as discovered
12 w.parent := v
13 Q.enqueue(w)

26

Breadth First Search

A B

F

I

E H

DC

G

FIFO Queue

-

front

Breadth First Search

A B

F

I

E H

DC

G

A

FIFO Queue

-

frontenqueue source node

Breadth First Search

A B

F

I

E H

DC

G

A

FIFO Queue

-

frontdequeue next vertex

Breadth First Search

frontvisit neighbors of A

A B

F

I

E H

DC

G

-

FIFO Queue

Breadth First Search

frontvisit neighbors of A

A B

F

I

E H

DC

G

-

FIFO Queue

Breadth First Search

BfrontB discovered

A B

F

I

E H

DC

G

- A

FIFO Queue

Breadth First Search

B frontvisit neighbors of A

A

F

I

E H

DC

G

-

B

A

FIFO Queue

Breadth First Search

B I frontI discovered

A

F

I

E H

DC

G

-

B

A

A

FIFO Queue

Breadth First Search

B I frontfinished with A

A

F

I

E H

DC

G

-

B

A

A

FIFO Queue

Breadth First Search

B I front

F

I

E H

DC

G

-

B

A

A

dequeue next vertex

FIFO Queue

A

Breadth First Search

I front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

FIFO Queue

A

Breadth First Search

I front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

F discovered

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

visit neighbors of B

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

A already discovered

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

-

B

A

A

finished with B

B

FIFO Queue

A

Breadth First Search

I F front

F

I

E H

DC

G

- A

A

dequeue next vertex

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

A already discovered

B

FIFO Queue

BA

Breadth First Search

F front

F

I

E H

DC

G

- A

A

visit neighbors of I

B

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

E discovered

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

visit neighbors of I

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

F already discovered

BI

FIFO Queue

BA

Breadth First Search

F E front

F

I

E H

DC

G

- A

A

I finished

BI

FIFO Queue

BA

Breadth First Search

F E front

FE H

DC

G

- A

A

dequeue next vertex

BI

FIFO Queue

BA

I

Breadth First Search

E front

FE H

DC

G

- A

A

visit neighbors of F

BI

FIFO Queue

BA

I

Breadth First Search

E G front

FE H

DC

G

- A

A

G discovered

BI F

FIFO Queue

BA

I

Breadth First Search

E G front

FE H

DC

G

- A

A

F finished

BI F

FIFO Queue

BA

I

Breadth First Search

E G front

E H

DC

G

- A

A

dequeue next vertex

BI F

FIFO Queue

I

F

BA

Breadth First Search

G front

E H

DC

G

- A

A

visit neighbors of E

BI F

FIFO Queue

I

F

BA

Breadth First Search

G front

H

DC

G

- A

A

E finished

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

G front

H

DC

G

- A

A

dequeue next vertex

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

front

H

DC

G

- A

A

visit neighbors of G

BI F

FIFO Queue

I

F

BA

E

Breadth First Search

Cfront

H

DC

G

- A

A

C discovered

BI F

G

FIFO Queue

I

F

BA

E

Breadth First Search

Cfront

H

DC

G

- A

A

visit neighbors of G

BI F

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

G

- A

A

H discovered

BI F

G

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

G

- A

A

G finished

BI F

G

G

FIFO Queue

I

F

BA

E

Breadth First Search

C Hfront

H

DC

- A

A

dequeue next vertex

BI F

G

G

FIFO Queue

I

F

BA

E G

Breadth First Search

Hfront

H

DC

- A

A

visit neighbors of C

BI F

G

G

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

DC

- A

A

D discovered

BI F

G

G

C

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

DC

- A

A

C finished

BI F

G

G

C

FIFO Queue

I

F

BA

E G

Breadth First Search

H Dfront

H

D

- A

A

get next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G

C

Breadth First Search

Dfront

H

D

- A

A

visit neighbors of H

BI F

G

G

C

FIFO Queue

I

F

BA

E G

C

Breadth First Search

Dfront

D

- A

A

finished H

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

Dfront

D

- A

A

dequeue next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

front

D

- A

A

visit neighbors of D

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C

Breadth First Search

front

- A

A

D finished

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C D

Breadth First Search

front

- A

A

dequeue next vertex

BI F

G

G

C

FIFO Queue

I

F

BA

E G H

C D

Breadth First Search

frontSTOP

E H

D

- A

A

BI F

G

G

C

FIFO Queue

I

F

BA

G

C

Algorithm Performance
Completeness: Is the algorithm guaranteed to find
a solution when there is one

Optimality: Does the strategy find the optimal
solution

Time complexity: How long does it take to find a
solution

Space complexity: How much memory is needed to
perform the search

77

Algorithm Performance
b: the branching factor or maximum number of
successors of any node.

d: the depth of the shallowest goal node (i e the
number of steps along the path from the root).

m: the maximum length of any path in the state
space.

L: depth limit.

78

Breadth-First Search
Performance
Time: O(bd) [scary]

Space: O(bd)[Problem store each node]

Complete: Yes (if the shallowest goal node is at some finite
depth d, breadth-first search will eventually find it after
generating all shallower nodes)

Optimal: Yes (the shallowest goal node is not necessarily
the optimal one but, if step costs are all identical??)

79

Depth-first search
DFS-iterative (G, s): //Where G is graph and s is
source vertex

let S be stack
S.push(s) //Inserting s in stack
mark s as visited.
while (S is not empty):

//Pop a vertex from stack to visit next
v = S.pop()

//Push all the neighbours of v in stack that are not visited
for all neighbours w of v in Graph G:

if w is not visited :
S.push(w)
mark w as visited

80

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

A

A B C D E F G H I

Output

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

A B C D E F G H I

y

Output A

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

B

A B C D E F G H I

y y

Output A

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I B

A B C D E F G H I

y y y

Output A

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I B

A B C D E F G H I

y y y

Output A

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I

A B C D E F G H I

y y y

Output A B

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I F

A B C D E F G H I

y y Y y

Output A B

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I F

A B C D E F G H I

y y Y y

Output A B

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I

A B C D E F G H I

y y Y y

Output A B F

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E

A B C D E F G H I

y y Y Y y

Output A B F

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E G

A B C D E F G H I

y y Y Y Y y

Output A B F

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E G

A B C D E F G H I

y y Y Y Y y

Output A B F

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E

A B C D E F G H I

y y Y Y Y y

Output A B F G

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H

A B C D E F G H I

y y Y Y Y Y y

Output A B F G

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H C

A B C D E F G H I

y y Y Y Y Y Y y

Output A B F G

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H C

A B C D E F G H I

y y Y Y Y Y Y y

Output A B F G

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H

A B C D E F G H I

y y Y Y Y Y Y y

Output A B F G C

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H D

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H D

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E H

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I E

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H E

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

I

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H E

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H E I

Depth-first search

A B

F

I

E H

DC

G

LIFO Stack

-

A B C D E F G H I

y y Y Y Y Y Y Y y

Output A B F G C D H E I

Algorithm Performance
Completeness: Is the algorithm guaranteed to find
a solution when there is one

Optimality: Does the strategy find the optimal
solution

Time complexity: How long does it take to find a
solution

Space complexity: How much memory is needed to
perform the search

108

Algorithm Performance
b: the branching factor or maximum number of
successors of any node.

d: the depth of the shallowest goal node (i e the
number of steps along the path from the root).

m: the maximum length of any path in the state
space.

L: depth limit.

109

Depth-First Search
Performance
Time: O(bm)
◦ (Note that m itself can be much larger than d (the depth of the

shallowest solution) and is infinite if the tree is unbounded.)

Space: O(bm)
◦ (depth-first tree search needs to store only a single path from

the root to a leaf node, along with the remaining unexpanded
sibling nodes for each node on the path. Once a node has been
expanded, it can be removed from memory as soon as all its
descendants have been fully explored.)

Complete: No
◦ (Because of Cycle and In infinite state spaces, fail if an infinite

non-goal path is encountered.)

Optimal: No

110

111

?

